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TRANSVERSEVIBRATIONOF ELASTIC^VISCOELASTIC^
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COMPRESSION}EXPERIMENTALANDANALYTICAL
STUDY

C. L. Sisemorey and C. M. Darvennes

Department of Mechanical Engineering, Tennessee Technological University, P.O. Box 5014,
Cookeville, TN 38505, U.S.A.

Experimental and analytical results are presented from an investigation into the
compressional vibration of an elastic–viscoelastic–elastic three-layer sandwich beam. Most
analytical models make the fundamental assumption that shear deformation in the
viscoelastic core yields the largest damping and compressional deformation is negligible.
Experimental results from a cantilever beam with a constrained layer viscoelastic damping
treatment driven with a sinusoidal input are given which show compressional deformation
over a relatively wide driving frequency range. A new analytical model for compressional
damping is presented and compared with experimental results, with the Mead and Markus
shear damping model, and with the Douglas and Yang compressional damping model.
These results indicate that the proposed compressional model is a better predictor of
resonance frequencies for the cantilever beams tested and that all models show deficiencies
in predicting damping

# 2002 Elsevier Science Ltd.
1. INTRODUCTION

The use of sandwich beams with embedded viscoelastic damping material has become
relatively common for vibration and noise control. The three-layer damped beam
arrangement consists of a layer of high-damping viscoelastic material bonded to a machine
or structural component with an additional layer of elastic material bonded to the outer
surface of the viscoelastic material, thus creating a three-layer sandwichtype structure with
a viscoelastic damping core. The effect of the outer elastic layer, the constraining layer, is
to increase the deformation in the viscoelastic core, thus resulting in higher energy
dissipation in the viscoelastic material. There are two primary methods for dissipating
energy in the viscoelastic core of a constrained layer damping treatment}shear
deformation and compressional deformation. Shear deformation results when the
constraining layer and the base structure move parallel to each other, acting to shear
the viscoelastic core. Compressional or extensional deformation results when the
constraining layer and the base structure move perpendicular to each other, acting to
compress or stretch the viscoelastic material.

The vast majority of the research in this area has focused on the shear method of
dissipating energy. In fact, the vast majority of researchers in this area make the
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assumption that transverse displacements of all points on a cross-section are equal, and
hence, compressional damping does not occur or is negligible. The earliest of these are
papers by Kerwin and DiTaranto [1, 2] which focused on mathematical modelling of long,
simply supported beams with soft viscoelastic cores and thin, stiff constraining layers. In a
series of later papers, Mead and Markus [3–5], developed a sixth order differential
equation of motion in terms of the transverse displacement of the beam for arbitrary
boundary conditions. The analytical work presented by Mead and Markus makes the
fundamental assumption that shearing of the viscoelastic core is the only mechanism for
energy dissipation and that compressional damping does not occur. Mead and Markus
work has become the generally accepted method of modelling and describing damped
three-layer beams and plates.

Later, Douglas and Yang [6, 7] showed experimentally that transverse compressional
damping can become the dominant damping method in narrow frequency
bands under certain conditions. In addition, Douglas and Yang presented a mathematical
model for compressional damping in three-layer beams. Sylwan [8] developed
a model to combine shear and compressional damping effects in layered beams with
thin damping cores showing increased losses over a wider frequency range than could
be predicted by either shear damping or compressional damping alone. More recently,
Lee and Kim [9] presented mathematical results suggesting that neglecting compressional
damping in the analysis of beams and plates with constrained viscoelastic damping layers
would only give acceptable results for very thin viscoelastic layers.

Finally, Sisemore et al. [10, 11] presented experimental results from a cantilever beam
under impact loading and from an operating four-bar mechanism with a damped coupler
link that show compressional damping in the viscoelastic core.

It is the aim of this research to show the extent to which compressional damping can
exist in the viscoelastic core and to offer a new analytical model for calculating the
frequency response of damped beams subject to compressional damping only. This model
is compared with experimental results to determine its validity.

2. EXPERIMENTAL EVALUATION

The first experiment was designed to measure the response of a cantilever beam with a
constrained layer of viscoelastic damping material to a steady-state sinusoidal input. The
experimental set-up, shown in Figure 1, used two MTI Fotonic fiber optic displacement
sensors to measure the free end displacement of the base beam and the constraining layer.
An MB Dynamics Modal 50 vibration exciter drove the beam via a stinger that was
threaded into the free end of the base beam. The vibration exciter was suspended above
the cantilever beam by attaching the exciter to a steel support frame using wire rope. The
same rigid base was used to support the vibration exciter support frame and the test
fixture. A series of steady-state sinusoidal inputs were provided to the vibration exciter
from a programmable signal generator. The displacements of the beam and constraining
layer were measured using a computer data acquisition system. With this arrangement, it
was possible to directly measure any compressional vibration in the viscoelastic core. The
two fiber optic displacement sensors were mounted such that one sensor measured the
displacement of the constraining layer at a given point while the second sensor measured
the displacement at the corresponding point on the base beam. A direct comparison of the
two displacements determines the amount of relative motion between the constraining
layer and the base beam.



Figure 1. Experimental set-up.

Figure 2. Steady-state tip response to a 30Hz sinusoidal input (}}, base beam; - - - - -, constraining layer).
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The beam for this experiment was 6�35mm thick, the viscoelastic layer was 3�05mm
thick, and the constraining layer was 3�18mm thick. All three layers were 25�4mm wide.
The base beam was 314mm long and the viscoelastic and constraining layers were 305mm
long, with the difference providing a small relief at the clamped end to prevent interference
between the constraining layer and the test clamp. The test beam and its constraining layer
were constructed of aluminum with the following standard properties: modulus of
elasticity E ¼ 71GPa, shear modulus G=26�2GPa, and density r ¼ 2710 kg/m3. The
viscoelastic layer was made of EAR-C1002 viscoelastic material bonded to the aluminum
layers with Bostik 7132/Boscodur #4 two-part epoxy.

The beam was driven with a sinusoidal input at over 40 different frequencies ranging
from 25 up to 400Hz. At each frequency step, the system was allowed sufficient time to
reach steady-state conditions before taking data. Figure 2 shows the tip response of the
cantilever beam to a 30Hz steady-state sinusoidal input and is typical of the response
measured over the frequency range tested. The responses of the beam and constraining
layer were measured and for comparison, the relative amplitude difference between the
beam and constraining layer was calculated by

DR ¼ ðDB �DLÞ=DB; ð1Þ



C. L. SISEMORE AND C. M. DARVENNES158
where DR is the relative displacement, DB is the steady state displacement amplitude of the
base beam, and DL is the steady state displacement amplitude of the constraining layer.

Figure 3 shows the relative displacements calculated over the tested frequency range as
well as the actual amplitudes measured for comparison. The results indicate that for this
test configuration, the vibration amplitude of the constraining layer is greater than the
amplitude of the base beam in all cases. On average, the relative difference between the
base and constraining layer was around 13%. Most of the values fell within a narrow
range from 10 to 17% relative displacement with a few outlying values reaching as high as
49% and as low as 0�5%.

These results show a continuous trend of compressional vibration in the viscoelastic
core over a relatively wide range of frequencies. The general assumption in the literature is
that there is no compressional vibration, or if there is any, it occurs over a very narrow
frequency bandwidth known as the compressional delamination frequency [6]. In contrast,
for the beam tested here, the compressional delamination frequency bandwidth ranges
from around 800 up to 2100Hz, based on the excitation frequency. The reason for the
wide range of compressional delamination frequencies is that the viscoelastic material
properties change with driving frequency. Thus, at driving frequencies around 25Hz, the
delamination frequency is near 800Hz and, as the driving frequency increases to 400Hz,
the delamination frequency increases to around 2100Hz. Since the delamination
frequencies are well outside the range of driving frequencies in this experiment and yet
compressional vibration does occur, we conclude that compressional damping occurs to
some extent at any excitation frequency. It is, however, the dominant damping mechanism
at the compressional delamination frequency [6].

3. ANALYTICAL MODEL FOR COMPRESSIONAL DAMPING

Based on the results obtained from the steady-state sinusoidal input experiment, a new
analytical model was developed. It assumes that only compressional damping occurs. This
model can then be combined with a shear damping model to estimate the behavior of real
systems. The equations of motion for a damped three-layer composite beam can be easily
derived by use of the extended Hamilton’s principle which can be expressed in the formZ t2

t1

ðDT � DVÞ dt ¼ 0; ð2Þ
Figure 3. Comparison of beam and constraining layer vibration amplitudes (}}, base beam; - - - - -,
constraining layer; � � � � � � , percent difference).
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where DT and DV are the variations in the kinetic and potential energies of the system,
respectively.

From the beam shown in Figure 4, it can be easily seen that the kinetic energy from
transverse vibration in the z direction is given by
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where wi ¼ wiðx; tÞ and mi are the transverse displacement and the mass per unit length of
the ith layer of the composite beam, respectively. In this development, the base beam is
denoted by the subscript 1, the viscoelastic core by subscript 2, and the constraining layer
by subscript 3. Several previous researchers have assumed that the mass of the viscoelastic
material is negligible, however, this is not necessarily true, especially in systems
constructed with light-weight beams and constraining layers, and relatively thick
viscoelastic cores. In addition, it is convenient to define the displacements of the
viscoelastic core in terms of the displacements of the base beam and constraining layer.
Since the viscoelastic core is relatively soft with respect to the two elastic layers, its
displacement can be assumed to be completely defined as a linear function of the
displacements of the two elastic layers. Thus, the mid-plane displacement of the
viscoelastic core is simply the average displacement of the base and constraining layers:

w2 ¼ 1
2w1 þ 1

2w3: ð4Þ

The potential energy terms in the extended Hamilton’s principle formulation are the
sum of the effects of the potential energy from bending of the three-layer beam and from
compression or stretching of the viscoelastic core. Assuming Euler–Bernoulli beam theory,
we write the potential energy from bending as
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where EiIi is the bending stiffness or flexural rigidity of the ith layer of the beam. The
potential energy from bending of the viscoelastic core is neglected due to the softness of
the viscoelastic core in comparison with the elastic layers.

Now, it is assumed that the viscoelastic core is sufficiently soft that it can be modelled as
a complex compression spring. The potential energy from compression of the viscoelastic
core would then be given by

Vðx; tÞ ¼
1
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2 dx; ð6Þ
Figure 4. Geometry and co-ordinate system for the three-layer beam.
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where k� is the complex spring constant per unit length for a complex axial compression
spring. It is given by E�

vb=tv, where E�
v is the complex elastic modulus of the viscoelastic

material, b is the beam width, and tv is the viscoelastic core thickness.
Combining equations (3)–(6), we write the kinetic and potential energy equations in

terms of the displacements of the base and constraining layers only. Next, we perform the
operations involved in the extended Hamilton’s principle. The variation in the kinetic
energy gives
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assuming that the order of the variations and differentiations with respect to time are
interchangeable. Similarly, the variation in the potential energy is given by
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Substituting equations (7) and (8) into equation (2), integrating by parts and grouping like
terms gives
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At this point, the arbitrariness of the virtual displacements is invoked in a judicious
manner. In particular, we assume that either dwi or its coefficient in the boundary term is
zero at x ¼ 0 and x ¼ L, and that dwi is entirely arbitrary over the domain 05x5L, we
find that equation (9) can be satisfied if and only if
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over 05x5L and subjected to the necessary boundary conditions. The boundary
conditions are that either the shear force or displacement is specified by
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at x ¼ 0 or L and that either the moment or slope is defined by

EiIi
@2wi
@x2

¼ 0 or
@wi
@x

¼ 0; ð12Þ

at x ¼ 0 or L for i ¼ 1 or 3 for the base beam or constraining layer, respectively.
This pair of coupled differential equations presented in equations (10a) and (10b) are

very similar to the coupled set of equations presented by Douglas and Yang [6] with the
exception of the additional terms for the mass of the viscoelastic core. These are especially
important as the mass of the base beam and constraining layer is reduced, and the
thickness of the viscoelastic core increased. Assuming homogeneous material properties
for the composite beam and taking the Fourier transform of equations (10a) and (10b)
gives
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where Wiðx;oÞ ¼ FFTfwiðx; tÞg.
These equations can be combined into a single eighth order differential equation with

complex coefficients representing the motion of the base beam. First, we rearrange
equation (13a) to solve forW3 as a function ofW1 then we substitute that expression into
equation (13b), giving
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This is the differential equation governing the motion of the base beam. The solution of
this equation is relatively straightforward since it is quadratic in the fourth derivative with
respect to W1. Assuming a progressive wave, the solution can be written as

W1ðx;oÞ ¼
X
i

Aie
lix; ð15Þ

where li are the eight roots of the characteristic equation and the coefficients Ai are the
constants to be determined based on the boundary conditions. Since equation (14) can be
represented as a quadratic equation, it has only two distinct roots. The remaining roots are
the positive and negative complex conjugates of the two distinct roots.

For cantilever beam type boundary conditions, fixed-free end conditions, the four
equations of constraint for the base beam require that at the clamped end,
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Here, the co-ordinate system has been chosen so that x ¼ 0 occurs at the free end of the
cantilever beam and x ¼ L occurs at the clamped end, as shown in Figure 4. The applied
sinusoidal loading, implicit to the Fourier transform of the partial differential equations, is
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accounted for in the shear boundary condition. Similarly, the shear and moment are zero
at both ends of the unrestrained constraining layer which yields the following four
boundary conditions:

@2W3

@x2
¼ 0;

@3W3

@x3
¼ 0; at x ¼ 0 and x ¼ L: ð18Þ

For a constraining layer that is restrained at an end, the boundary conditions require that
the slope and displacement match the slope and displacement of the base beam at the
restrained end.

The eight boundary conditions can be written in matrix form to solve for the eight
unknown coefficients, A1 � A8, at each frequency of interest. Once the unknown
coefficients are determined, the results can be expressed in any of the traditional frequency
response formulations. In terms of the receptance the results are
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1
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X
i
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The analytical frequency response functions can be analyzed and compared with
experimental results.

4. EXPERIMENTAL VALIDATION

In order to test the validity of the compressional damping model in viscoelastic beams, a
series of simple experiments was conducted on an additional eleven cantilever beams.
These experiments used standard modal analysis techniques to determine the first two
natural frequencies and damping ratios for the beams. The experimental values were then
compared with the results obtained from the compressional damping model presented in
the previous section and from results calculated using the Mead and Markus model [3, 4].
A comparison with the Douglas and Yang model [6] is also discussed.

The eleven cantilever beams were all 314mm long and 25�4mm wide with
various arrangements of viscoelastic core and constraining layer thicknesses, as
summarized in Table 1. All eleven beams and constraining layers were constructed
of aluminum and used EAR-C1002 viscoelastic material for the damping layer. Beams
1–9 had constraining layers that were unrestrained at both ends whereas beams 10 and 11
had constraining layers that were restrained at the clamped end of the beam. This
was done by lengthening the constraining layer and arranging the beam geometry
such that the layer was clamped in the fixture along with the base beam, to allow a
comparison of different constraining layer boundary conditions on the overall response of
the beams.

Frequency response functions were obtained from the force and displacement responses
of a modal force hammer and the upper MTI Fotonic fiber optic displacement sensor
shown in Figure 1, respectively. The first two natural frequencies and damping ratios were
extracted from the frequency response data using standard curve-fitting procedures. Data
used consisted of the experimental data, as well as the frequency response data calculated
using our compressional damping model and from the Mead and Markus shear damping
model. The results are presented in Tables 2 and 3. Figure 5 shows a comparison of the
frequency response plots obtained experimentally and with the two analytical models for
Beam 6. This plot is typical of the results obtained. Table 2 also includes data generated
with the Douglas and Yang model.

The results in Table 2 show that the compressional damping model estimates the first
two natural frequencies with more accuracy than the Mead and Markus model. Ten of the



Table 1

Cantilever beam thicknesses

Beam
Base beam

thickness (mm)
Viscoelastic core
thickness (mm)

Constraining
layer thickness (mm)

1 1�588
2 6�350 0�381 3�175
3 6�350

4 1�588
5 6�350 3�048 3�175
6 6�350

7 1�588
8 6�350 6�350 3�175
9 6�350

10y 6�350 3�048 3�175
11y 1�588 0�381 1�588

yConstraining layer restrained at clamped end.

Table 2

Comparison of calculated and experimental natural frequencies

Compressional model Mead–Markus model Douglas–Yang model

Beam

Experimental
frequency

(Hz)
Frequency

(Hz)
Error
(%)

Frequency
(Hz)

Error
(%)

Frequency
(Hz)

Error
(%)

First natural frequency
1 47�3 47�3 0�1 55�7 18 47�9 1�2
2 44�5 45�2 1�5 56�6 27 45�7 2�6
3 44�2 48�5 9�7 66�9 51 48�9 11
4 43�0 44�0 2�4 48�4 13 47�9 11
5 40�9 42�3 3�6 47�6 17 45�4 11
6 40�7 44�1 8�5 55�4 36 46�6 14
7 39�6 40�7 2�8 45�0 14 47�8 21
8 38�1 39�5 3�6 44�4 17 45�3 19
9 37�8 41�0 8�5 52�0 38 45�7 21

10 48�1 42�9 �11 70�9 47 46�0 �4�3
11 36�4 26�2 �28 53�0 46 26�6 �27

Second natural frequency
1 329 297 �9�8 376 14 300 �8�8
2 319 284 �11 423 33 287 �10
3 350 313 �11 528 51 315 �9�9
4 293 276 �6�0 357 22 300 �2�4
5 284 266 �6�2 364 28 286 0�63
6 305 293 �4�0 419 37 309 1�3
7 270 255 �5�3 344 28 300 11
8 262 249 �5�0 344 32 285 8�9
9 286 276 �3�6 388 36 307 7�3

10 285 269 �5�9 362 27 288 1�2
11 199 164 �18 303 52 167 �16
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Table 3

Comparison of calculated and experimental damping ratios

Compressional model Mead–Markus model

Beam
Experimental
damping ratio

Damping
ratio Error (%)

Damping
ratio Error (%)

First natural frequency
1 0�0223 0�0001 �22000 0�0462 110
2 0�0267 0�0015 �1700 0�0768 190
3 0�0215 0�0151 �42 0�0914 330
4 0�0214 0�0002 �11000 0�0576 170
5 0�0226 0�0023 �880 0�0663 190
6 0�0226 0�0203 �11 0�0633 180
7 0�0229 0�0003 �7500 0�0663 190
8 0�0224 0�0028 �700 0�0702 210
9 0�0231 0�0223 �4 0�0596 160

10 0�0657 1� 10�5 �7� 105 0�1782 170
11 0�0556 9� 10�6 �6� 105 0�0553 �1

Second natural frequency
1 0�0513 9� 10�5 �57000 0�0392 �24
2 0�0826 0�0011 �7400 0�0654 �21
3 0�1084 0�0073 �1400 0�0809 �25
4 0�0914 0�0002 �46000 0�0980 7
5 0�1055 0�0015 �6900 0�1243 18
6 0�1027 0�0074 �1300 0�1274 24
7 0�0977 0�0005 �19000 0�1205 23
8 0�0967 0�0018 �5300 0�1707 77
9 0�1070 0�0072 �1400 0�1203 12

10 0�1017 0�0001 �1� 105 0�1209 19
11 0�0835 7� 10�7 �1� 107 0�1006 20

Figure 5. Experimental and analytical frequency response plots for beam 6 (}}, experimental; - - - - -,
compressional model; � � � � � � , Mead and Markus model).
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eleven beams are predicted within 11% and considerably more accurately in many cases,
with errors as low as 0�1% and averaging 6%. In comparison, the Mead and Markus
model predicts the natural frequencies with consistently higher errors; ranging from 12
to 52%.
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These results show that the shear damping model couples the stiffness of the base beam
and constraining layer too strongly. The first nine beams had a 314mm�
25�4mm� 6�35mm base. Euler–Bernoulli beam theory gives the first two natural
frequencies as 53�1 and 333Hz for this undamped base beam. However, all the tested
beams have additional mass and stiffness from the viscoelastic and constraining layers.
The additional stiffness from the constraining layer causes an increase in the natural
frequencies while the additional mass causes a decrease in the natural frequencies. Since all
the experimental frequencies are lower than the undamped beam frequencies, it is evident
that the additional mass is the dominant factor in determining the vibratory response of
the beams over the added stiffness. The compressional model predicts natural frequencies
that are very close to the experimental values and are all less than the undamped beam
frequencies. In contrast, most frequencies predicted by the shear damping model are
higher than the undamped beam frequencies, implying that the stiffness from the
constraining layer has a dominant effect on the frequency response.

A comparison of the experimental and predicted damping ratios is presented in Table 3.
The results indicate that the compressional model predicts damping relatively poorly
while the Mead and Markus model is adequate. For the first natural frequency,
the compression model was relatively accurate in three of the 11 cases and the shear model
was accurate in only one out of 11 cases. In addition, the compressional model consistently
under-predicted the damping of the beams. This is due to neglecting the shear damping
contribution. The shear damping model, on the other hand, consistently over-predicted
the damping by at least a factor of two in all but one case. This severe over-prediction
of damping for the first mode could lead to significant problems in design situations.
For the second natural frequency, the compressional model was a fairly poor predictor in
all cases, whereas the shear damping model was accurate to within 25% in most cases.
The compressional damping model was generally more accurate as the stiffness of the
constraining layer increased, as seen in beams 3, 6, and 9, where the constraining layer
and base beam had the same thickness. This is expected, since a stiffer constraining
layer will be more likely to cause stretching in the viscoelastic core rather than the
viscoelastic core causing bending in the constraining layer. Similarly, the worst errors for
the compressional model are seen with beams 1, 4 and 7, where the constraining layer is
thinnest. This indicates that shear damping is likely the dominant damping mechanism at
the second natural frequency, whereas compressional damping at this frequency is less
significant.

The difference between the last two beams and the first nine is that the constraining
layer for the first nine beams is unrestrained at both ends, whereas the constraining
layer on the last two beams is restrained at the clamped end. This arrangement, a change
in the constraining layer boundary conditions, increased the first mode damping
considerably over the beams with unrestrained constraining layers. However, the second
mode damping seemed to be relatively unaffected. In addition, restraining the constrain-
ing layer had the effect of making the first natural frequency stiffness-dominated instead of
mass-dominated, as in the other cases. It is interesting to note that restraining one end
of the constraining layer should tend to make the beam act more according to
the assumptions of the shear damping models, yet the shear damping model did an
equally poor job of predicting the response of beam 10. Beam 11, on the other hand,
could be considered as an ideal shear damping arrangement. It had thin, relatively
stiff symmetric outer layers, a very thin viscoelastic core, and a constraining layer that
was restrained at one end. The prediction of damping by the Mead and Markus model
for this case was quite good for both modes, however, the natural frequency predictions
were some of the poorest.
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Due to their similarities, it is reasonable to compare the proposed compressional model
and the model presented by Douglas and Yang [6]. As was stated previously, the primary
difference between the two models is the inclusion of additional terms to account for the
mass of the viscoelastic core in the present model. This addition has the effect of increasing
the mass without increasing the stiffness in the analytical models. As a result, the natural
frequencies calculated by the proposed model are always lower than those predicted by the
Douglas and Yang model, as can be seen in Table 2. For the very thin viscoelastic cores,
this amounts to a very small frequency shift, whereas for the thicker viscoelastic cores, the
frequency shift is quite significant. Thus, the Douglas and Yang model predicts natural
frequencies that are always too high where the frequencies predicted by the proposed
model appear to correlate better with the experimental data. The only exception is beam
10, where the compression models under-predict the system stiffness. The Douglas and
Yang model predicts that frequency more accurately because it underestimates both
stiffness and mass.

Since the only difference between the proposed model and the Douglas and Yang model
is the mass of the viscoelastic core, the damping predictions are essentially identical. For
example, damping for beams 8, 9, and 10 is evaluated using the Douglas and Yang model
at 0�0028, 0�0227, and 6�3� 10�6 for the first mode and 0�0017, 0�0072 and 10�4 for the
second mode, respectively. The two compression models are equally poor predictors of
damping for the tested beams.

5. CONCLUSIONS

In conclusion, the experimental results presented here show that compressional vibration
in a three-layer viscoelastic sandwich beam is not a narrow bandwidth phenomenon, but
rather a broadband vibratory mechanism for dissipating energy in the viscoelastic core.

The compressional damping model presented here is a relatively accurate and simple
method for predicting resonance frequencies of systems with constrained-layer viscoelastic
damping treatments. For the arrangements tested, it is a considerably better predictor of
resonance frequencies than the shear damping models currently available. While it is
generally true that the main purpose of three-layer damping treatments is to add damping,
an accurate model for predicting natural frequencies is very important too, given the
frequency dependance of the viscoelastic material and the need to know resonance
frequencies in design applications. It is expected that improved frequency and damping
predictions could be obtained with the addition of shear damping terms into the model.
However, any shear damping should not couple the base beam and constraining layer too
strongly as this would lead to predictions of a structure that is overly stiff.

Damping predictions were quite poor for the compressional model and adequate for the
shear models with only a couple of exceptions. The two exceptions were both first mode
damping for beams with very stiff constraining layers. However, neglecting shear damping
results in consistent damping under-prediction for the compressional model. Including
shear damping as well as compressional damping should greatly improve the damping
predictions. The trend seen is that the geometry of the test specimen and the vibration
mode studied seem to determine the significant damping mechanisms.
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